Source code for netket.hilbert.doubled_hilbert

# Copyright 2021 The NetKet Authors - All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from netket.utils.dispatch import parametric

from .abstract_hilbert import AbstractHilbert
from .discrete_hilbert import DiscreteHilbert


[docs] @parametric class DoubledHilbert(DiscreteHilbert): r""" Superoperatorial hilbert space for states living in the tensorised state :math:`\hat{H}\otimes \hat{H}`, encoded according to Choi's isomorphism. """
[docs] def __init__(self, hilb: AbstractHilbert): r""" Superoperatorial hilbert space for states living in the tensorised state :math:`\hat{H}\otimes \hat{H}`, encoded according to Choi's isomorphism. Args: hilb: the Hilbert space H. Examples: Simple superoperatorial hilbert space for few spins. >>> import netket as nk >>> g = nk.graph.Hypercube(length=5,n_dim=2,pbc=True) >>> hi = nk.hilbert.Spin(N=3, s=0.5) >>> hi2 = nk.hilbert.DoubledHilbert(hi) >>> print(hi2.size) 6 """ self.physical = hilb self._size = 2 * hilb.size super().__init__(shape=hilb.shape * 2)
@property def size(self): return self._size @property def shape(self): return self._shape @property def is_finite(self): return self.physical.is_finite @property def local_size(self): return self.physical.local_size @property def local_states(self): return self.physical.local_states @property def constrained(self): return self.physical.constrained
[docs] def size_at_index(self, i): r"""Size of the local degrees of freedom for the i-th variable. Args: i: The index of the desired site Returns: The number of degrees of freedom at that site """ return self.physical.size_at_index( i if i < self.physical.size else i - self.physical.size )
[docs] def states_at_index(self, i): r"""A list of discrete local quantum numbers at the site i. If the local states are infinitely many, None is returned. Args: i: The index of the desired site. Returns: A list of values or None if there are infinitely many. """ return self.physical.states_at_index( i if i < self.physical.size else i - self.physical.size )
@property def size_physical(self): return self.physical.size @property def n_states(self): return self.physical.n_states**2 def _numbers_to_states(self, numbers): # !!! WARNING # This code assumes that states are stored in a MSB # (Most Significant Bit) format. # We assume that the rightmost-half indexes the LSBs # and the leftmost-half indexes the MSBs # HilbertIndex-generated states respect this, as they are: # 0 -> [0,0,0,0] # 1 -> [0,0,0,1] # 2 -> [0,0,1,0] # etc... dim = self.physical.n_states left, right = np.divmod(numbers, dim) out_l = self.physical.numbers_to_states(left) out_r = self.physical.numbers_to_states(right) return np.concatenate([out_l, out_r], axis=-1) def _states_to_numbers(self, states): # !!! WARNING # See note above in numbers_to_states n = self.physical.size dim = self.physical.n_states _out_l = self.physical._states_to_numbers(states[:, 0:n]) _out_r = self.physical._states_to_numbers(states[:, n : 2 * n]) return _out_l * dim + _out_r
[docs] def states_to_local_indices(self, x): return self.physical.states_to_local_indices(x)
def __repr__(self): return f"DoubledHilbert({self.physical})" @property def _attrs(self): return (self.physical,)