Source code for netket.hilbert.homogeneous

# Copyright 2021 The NetKet Authors - All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Callable

import numpy as np

from netket.utils import StaticRange
from netket.utils.types import Array

from .discrete_hilbert import DiscreteHilbert
from .index import (
    HilbertIndex,
    UniformTensorProductHilbertIndex,
    optimalConstrainedHilbertindex,
)


[docs] class HomogeneousHilbert(DiscreteHilbert): r"""The Abstract base class for homogeneous hilbert spaces. This class should only be subclassed and should not be instantiated directly. .. note:: To override the logic to index into constrained hilbert spaces, it is possible to use an informal interface built on top of non-public indexing classes. In particular, you can override the following properties and methods: - Do not specify the :code:`constraint_fn` keyword argument when calling the init method of this abstract class. - Override the property :py:attr:`~nk.hilbert.HomogeneousHilbert.constrained`, to return `True` or `False` depending on your own logic. - Override the property :py:attr:`~nk.hilbert.HomogeneousHilbert._hilbert_index` to return an hilbert index object (see the discussion in the source code of the folder :code:`netket/hilbert/index/__init__.py`). """
[docs] def __init__( self, local_states: Optional[StaticRange], N: int = 1, constraint_fn: Optional[Callable] = None, ): r""" Constructs a new :class:`~netket.hilbert.HomogeneousHilbert` given a list of eigenvalues of the states and a number of sites, or modes, within this hilbert space. This method should only be called from the subclasses `__init__` method. Args: local_states: :class:`~netket.utils.StaticRange` object describing the numbers used to encode the local degree of freedom of this Hilbert Space. N: Number of modes in this hilbert space (default 1). constraint_fn: A function specifying constraints on the quantum numbers. Given a batch of quantum numbers it should return a vector of bools specifying whether those states are valid or not. """ assert isinstance(N, int) if not (isinstance(local_states, StaticRange) or local_states is None): raise TypeError("local_states must be a StaticRange.") self._is_finite = local_states is not None if self._is_finite: self._local_states = local_states self._local_size = len(local_states) else: self._local_states = None self._local_size = np.iinfo(np.intp).max self._constraint_fn = constraint_fn self._hilbert_index_ = None shape = tuple(self._local_size for _ in range(N)) super().__init__(shape=shape)
@property def size(self) -> int: r"""The total number number of degrees of freedom.""" return len(self.shape) @property def local_size(self) -> int: r"""Size of the local degrees of freedom that make the total hilbert space.""" return self._local_size
[docs] def size_at_index(self, i: int) -> int: return self.local_size
@property def local_states(self) -> Optional[list[float]]: r"""A list of discrete local quantum numbers. If the local states are infinitely many, None is returned.""" if self.is_finite: return list(self._local_states) return self._local_states
[docs] def states_at_index(self, i: int): return self.local_states
@property def n_states(self) -> int: r"""The total dimension of the many-body Hilbert space. Throws an exception iff the space is not indexable.""" if not self.is_indexable: raise RuntimeError("The hilbert space is too large to be indexed.") return self._hilbert_index.n_states
[docs] def states_to_local_indices(self, x: Array): r"""Returns a tensor with the same shape of `x`, where all local values are converted to indices in the range `0...self.shape[i]`. This function is guaranteed to be jax-jittable. For the `Fock` space this returns `x`, but for other hilbert spaces such as `Spin` this returns an array of indices. .. warning:: This function is experimental. Use at your own risk. Args: x: a tensor containing samples from this hilbert space Returns: a tensor containing integer indices into the local hilbert """ return self._local_states.states_to_numbers(x, dtype=np.int32)
@property def is_finite(self) -> bool: r"""Whether the local hilbert space is finite.""" return self._is_finite @property def constrained(self) -> bool: r"""The hilbert space does not contain `prod(hilbert.shape)` basis states. Typical constraints are population constraints (such as fixed number of bosons, fixed magnetization...) which ensure that only a subset of the total unconstrained space is populated. Typically, objects defined in the constrained space cannot be converted to QuTiP or other formats. """ return self._constraint_fn is not None def _numbers_to_states(self, numbers: np.ndarray) -> np.ndarray: return self._hilbert_index.numbers_to_states(numbers) def _states_to_numbers(self, states: np.ndarray): return self._hilbert_index.states_to_numbers(states)
[docs] def all_states(self) -> np.ndarray: r"""Returns all valid states of the Hilbert space. Throws an exception if the space is not indexable. Returns: A (n_states x size) batch of states. this corresponds to the pre-allocated array if it was passed. """ if not self.is_indexable: # includes call to _setup raise RuntimeError("The hilbert space is too large to be indexed.") return self._hilbert_index.all_states()
@property def _hilbert_index(self) -> HilbertIndex: """ The `self._hilbert_index` is a lazily constructed object used to index into homogeneous Hilbert spaces. This indexing object implements the logic for `number_to_states`, `states_to_numbers` and `n_states`, as well as the handling of constraints if necessary. """ if self._hilbert_index_ is None: if not self.constrained: index = UniformTensorProductHilbertIndex(self._local_states, self.size) else: index = optimalConstrainedHilbertindex( self._local_states, self.size, self._constraint_fn ) self._hilbert_index_ = index return self._hilbert_index_ @property def is_indexable(self) -> bool: """Whether the space can be indexed with an integer""" if not self.is_finite: return False return self._hilbert_index.is_indexable def __repr__(self): constr = f", constrained={self.constrained}" if self.constrained else "" clsname = type(self).__name__ return f"{clsname}(local_size={self._local_size}, N={self.size}{constr})" @property def _attrs(self): return ( self.size, self.local_size, self._local_states, self.constrained, self._constraint_fn, )