Source code for netket.jax.utils

# Copyright 2021 The NetKet Authors - All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce
from typing import Optional, Tuple, Callable

import numpy as np

import jax
import netket.jax as nkjax
from jax import numpy as jnp
from jax.tree_util import (

from netket.utils import random_seed, mpi
from netket.utils.mpi import MPI_jax_comm
from netket.utils.types import PyTree, PRNGKeyT, SeedT, Scalar
from netket.utils.numbers import is_scalar

[docs]def tree_ravel(pytree: PyTree) -> Tuple[jnp.ndarray, Callable]: """Ravel (i.e. flatten) a pytree of arrays down to a 1D array. Args: pytree: a pytree to ravel Returns: A pair where the first element is a 1D array representing the flattened and concatenated leaf values, and the second element is a callable for unflattening a 1D vector of the same length back to a pytree of of the same structure as the input ``pytree``. """ leaves, treedef = tree_flatten(pytree) flat, unravel_list = nkjax.vjp(_ravel_list, *leaves) unravel_pytree = lambda flat: tree_unflatten(treedef, unravel_list(flat)) return flat, unravel_pytree
def _ravel_list(*lst): return jnp.concatenate([jnp.ravel(elt) for elt in lst]) if lst else jnp.array([]) def eval_shape(fun, *args, has_aux=False, **kwargs): """ Returns the dtype of forward_fn(pars, v) """ if has_aux: out, _ = jax.eval_shape(fun, *args, **kwargs) else: out = jax.eval_shape(fun, *args, **kwargs) return out
[docs]def tree_size(tree: PyTree) -> int: """ Returns the sum of the size of all leaves in the tree. It's equivalent to the number of scalars in the pytree. """ return sum(tree_leaves(tree_map(lambda x: x.size, tree)))
[docs]def tree_leaf_iscomplex(pars: PyTree) -> bool: """ Returns true if at least one leaf in the tree has complex dtype. """ return any(jax.tree_util.tree_leaves(jax.tree_map(jnp.iscomplexobj, pars)))
def tree_leaf_isreal(pars: PyTree) -> bool: """ Returns true if at least one leaf in the tree has real dtype. """ return any(jax.tree_util.tree_leaves(jax.tree_map(jnp.isrealobj, pars)))
[docs]def is_complex_dtype(typ): """ Returns True if typ is a complex dtype. This is almost equivalent to `jnp.iscomplexobj` but also handles types such as `float`, `complex` and `int`, which are used throughout netket. """ return jnp.issubdtype(typ, jnp.complexfloating)
def is_real_dtype(typ): """ Returns True if typ is a floating real dtype. This is almost equivalent to `jnp.isrealobj` but also handles types such as `float`, `complex` and `int`, which are used throughout netket. """ return jnp.issubdtype(typ, jnp.floating) # Return the type holding the real part of the input type def dtype_real(typ): """ If typ is a complex dtype returns the real counterpart of typ (eg complex64 -> float32, complex128 ->float64). Returns typ otherwise. """ if np.issubdtype(typ, np.complexfloating): if typ == np.dtype("complex64"): return np.dtype("float32") elif typ == np.dtype("complex128"): return np.dtype("float64") else: raise TypeError("Unknown complex floating type {}".format(typ)) else: return typ
[docs]def tree_ishomogeneous(pars: PyTree) -> bool: """ Returns true if all leaves have real dtype or all leaves have complex dtype. """ return not (tree_leaf_isreal(pars) and tree_leaf_iscomplex(pars))
[docs]def dtype_complex(typ): """ Return the complex dtype corresponding to the type passed in. If it is already complex, do nothing """ if is_complex_dtype(typ): return typ elif typ == np.dtype("float32"): return np.dtype("complex64") elif typ == np.dtype("float64"): return np.dtype("complex128") else: raise TypeError("Unknown complex type for {}".format(typ))
[docs]def maybe_promote_to_complex(*types): """ Maybe promotes the first argument to it's complex counterpart given by dtype_complex(typ) if any of the arguments is complex """ main_typ = types[0] for typ in types: if is_complex_dtype(typ): return dtype_complex(main_typ) else: return main_typ
[docs]def tree_conj(t: PyTree) -> PyTree: r""" Conjugate all complex leaves. The real leaves are left untouched. Args: t: pytree """ return jax.tree_map(lambda x: jax.lax.conj(x) if jnp.iscomplexobj(x) else x, t)
[docs]def tree_dot(a: PyTree, b: PyTree) -> Scalar: r""" compute the dot product of two pytrees Args: a, b: pytrees with the same treedef Returns: A scalar equal the dot product of of the flattened arrays of a and b. """ return jax.tree_util.tree_reduce( jax.numpy.add, jax.tree_map(jax.numpy.sum, jax.tree_map(jax.numpy.multiply, a, b)), )
[docs]def tree_cast(x: PyTree, target: PyTree) -> PyTree: r""" cast x the types of target Args: x: a pytree with arrays as leaves target: a pytree with the same treedef as x where only the dtypes of the leaves are accessed Returns: A pytree where each leaf of x is cast to the dtype of the corresponding leaf in target. The imaginary part of complex leaves which are cast to real is discarded. """ # astype alone would also work, however that raises ComplexWarning when casting complex to real # therefore the real is taken first where needed return jax.tree_map( lambda x, target: (x if jnp.iscomplexobj(target) else x.real).astype( target.dtype ), x, target, )
[docs]def tree_axpy(a: Scalar, x: PyTree, y: PyTree) -> PyTree: r""" compute a * x + y Args: a: scalar x, y: pytrees with the same treedef Returns: The sum of the respective leaves of the two pytrees x and y where the leaves of x are first scaled with a. """ if is_scalar(a): return jax.tree_map(lambda x_, y_: a * x_ + y_, x, y) else: return jax.tree_map(lambda a_, x_, y_: a_ * x_ + y_, a, x, y)
class RealImagTuple(tuple): """ A special kind of tuple which marks complex parameters which were split. Behaves like a regular tuple. """ @property def real(self): return self[0] @property def imag(self): return self[1] register_pytree_node( RealImagTuple, lambda xs: (xs, None), lambda _, xs: RealImagTuple(xs), ) def _tree_to_real(x): if tree_leaf_iscomplex(x): # TODO find a way to make it a nop? # return jax.vmap(lambda y: jnp.array((y.real, y.imag)))(x) r = jax.tree_map(lambda x: x.real if jnp.iscomplexobj(x) else x, x) i = jax.tree_map(lambda x: x.imag if jnp.iscomplexobj(x) else None, x) return RealImagTuple((r, i)) else: return x def _tree_to_real_inverse(x): if isinstance(x, RealImagTuple): # not using jax.lax.complex because it would convert scalars to arrays return jax.tree_map(lambda re, im: re + 1j * im if im is not None else re, *x) else: return x
[docs]def tree_to_real(pytree: PyTree) -> Tuple[PyTree, Callable]: """Replace all complex leaves of a pytree with a RealImagTuple of 2 real leaves. Args: pytree: a pytree to convert to real Returns: A pair where the first element is the converted real pytree, and the second element is a callable for converting back a real pytree to a complex pytree of of the same structure as the input pytree. """ return _tree_to_real(pytree), _tree_to_real_inverse
def compose(*funcs): """ function composition compose(f,g,h)(x) is equivalent to f(g(h(x))) """ def _compose(f, g): return lambda *args, **kwargs: f(g(*args, **kwargs)) return reduce(_compose, funcs)
[docs]def PRNGKey( seed: Optional[SeedT] = None, *, root: int = 0, comm=MPI_jax_comm ) -> PRNGKeyT: """ Initialises a PRNGKey using an optional starting seed. The same seed will be distributed to all processes. """ if seed is None: key = jax.random.PRNGKey(random_seed()) elif isinstance(seed, int): key = jax.random.PRNGKey(seed) else: key = seed key = jax.tree_map(lambda k: mpi.mpi_bcast_jax(k, root=root, comm=comm)[0], key) return key
[docs]def mpi_split(key, *, root=0, comm=MPI_jax_comm) -> PRNGKeyT: """ Split a key across MPI nodes in the communicator. Only the input key on the root process matters. Arguments: key: The key to split. Only considered the one on the root process. root: (default=0) The root rank from which to take the input key. comm: (default=MPI.COMM_WORLD) The MPI communicator. Returns: A PRNGKey depending on rank number and key. """ # Maybe add error/warning if in_key is not the same # on all MPI nodes? keys = jax.random.split(key, mpi.n_nodes) keys = jax.tree_map(lambda k: mpi.mpi_bcast_jax(k, root=root)[0], keys) return keys[mpi.rank]
[docs]class PRNGSeq: """ A sequence of PRNG keys generated based on an initial key. """ def __init__(self, base_key: Optional[SeedT] = None): if base_key is None: base_key = PRNGKey() elif isinstance(base_key, int): base_key = PRNGKey(base_key) self._current = base_key def __iter__(self): return self def __next__(self): self._current = jax.random.split(self._current, num=1)[0] return self._current
[docs] def next(self): return self.__next__()
[docs] def take(self, num: int): """ Returns an array of `num` PRNG keys and advances the iterator accordingly. """ keys = jax.random.split(self._current, num=num + 1) self._current = keys[-1] return keys[:-1]