Source code for netket.sampler.rules.hamiltonian_numpy
# Copyright 2021 The NetKet Authors - All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from numba import jit
import numpy as np
from flax import struct
from netket.operator import AbstractOperator
from .base import MetropolisRule
@struct.dataclass
class HamiltonianRuleState:
sections: np.ndarray
"""Preallocated array for sections"""
@struct.dataclass
class HamiltonianRuleNumpy(MetropolisRule):
"""
Rule for Numpy sampler backend proposing moves according to the terms in an operator.
In this case, the transition matrix is taken to be:
.. math::
T( \\mathbf{s} \\rightarrow \\mathbf{s}^\\prime) = \\frac{1}{\\mathcal{N}(\\mathbf{s})}\\theta(|H_{\\mathbf{s},\\mathbf{s}^\\prime}|),
"""
operator: AbstractOperator = struct.field(pytree_node=False)
"""The (hermitian) operator giving the transition amplitudes."""
def __post_init__(self):
# Raise errors if hilbert is not an Hilbert
if not isinstance(self.operator, AbstractOperator):
raise TypeError(
"Argument to HamiltonianRule must be a valid operator, "
f"but operator is a {type(self.operator)}."
)
[docs] def init_state(rule, sampler, machine, params, key):
if sampler.hilbert != rule.operator.hilbert:
raise ValueError(
f"""
The hilbert space of the sampler ({sampler.hilbert}) and the hilbert space
of the operator ({rule.operator.hilbert}) for HamiltonianRule must be the same.
"""
)
return HamiltonianRuleState(
sections=np.empty(sampler.n_batches, dtype=np.int32)
)
[docs] def transition(rule, sampler, machine, parameters, state, rng, σ):
σ = state.σ
σ1 = state.σ1
log_prob_corr = state.log_prob_corr
sections = state.rule_state.sections
σp = rule.operator.get_conn_flattened(σ, sections)[0]
rand_vec = rng.uniform(0, 1, size=σ.shape[0])
_choose(σp, sections, σ1, log_prob_corr, rand_vec)
rule.operator.n_conn(σ1, sections)
log_prob_corr -= np.log(sections)
def __repr__(self):
return f"HamiltonianRuleNumpy({self.operator})"
@jit(nopython=True)
def _choose(states, sections, out, w, rand_vec):
low_range = 0
for i, s in enumerate(sections):
n_rand = low_range + int(np.floor(rand_vec[i] * (s - low_range)))
out[i] = states[n_rand]
w[i] = math.log(s - low_range)
low_range = s