Source code for netket.hilbert.homogeneous

# Copyright 2021 The NetKet Authors - All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Callable

from numbers import Real

import numpy as np

from .discrete_hilbert import DiscreteHilbert
from .index import HilbertIndex, UnconstrainedHilbertIndex, ConstrainedHilbertIndex


class HomogeneousHilbert(DiscreteHilbert):
    r"""The Abstract base class for homogeneous hilbert spaces.

    This class should only be subclassed and should not be instantiated directly.

    .. note::

        To override the logic to index into constrained hilbert spaces, it is
        possible to use an informal interface built on top of non-public
        indexing classes.

        In particular, you can override the following properties and methods:

        - Do not specify the :code:`constraint_fn` keyword argument when
          calling the init method of this abstract class.
        - Override the property :py:attr:`~nk.hilbert.HomogeneousHilbert.constrained`,
          to return `True` or `False` depending on your own logic.
        - Override the property :py:attr:`~nk.hilbert.HomogeneousHilbert._hilbert_index`
          to return an hilbert index object (see the discussion in the source code of
          the folder :code:`netket/hilbert/index/__init__.py`).

    """

[docs] def __init__( self, local_states: Optional[list[Real]], N: int = 1, constraint_fn: Optional[Callable] = None, ): r""" Constructs a new :class:`~netket.hilbert.HomogeneousHilbert` given a list of eigenvalues of the states and a number of sites, or modes, within this hilbert space. This method should only be called from the subclasses `__init__` method. Args: local_states: Eigenvalues of the states. If the allowed states are an infinite number, None should be passed as an argument. N: Number of modes in this hilbert space (default 1). constraint_fn: A function specifying constraints on the quantum numbers. Given a batch of quantum numbers it should return a vector of bools specifying whether those states are valid or not. """ assert isinstance(N, int) self._is_finite = local_states is not None if self._is_finite: self._local_states = np.asarray(local_states) assert self._local_states.ndim == 1 self._local_size = self._local_states.shape[0] self._local_states = self._local_states.tolist() self._local_states_frozen = frozenset(self._local_states) else: self._local_states = None self._local_states_frozen = None self._local_size = np.iinfo(np.intp).max self._constraint_fn = constraint_fn self.__hilbert_index = None shape = tuple(self._local_size for _ in range(N)) super().__init__(shape=shape)
@property def size(self) -> int: r"""The total number number of degrees of freedom.""" return len(self.shape) @property def local_size(self) -> int: r"""Size of the local degrees of freedom that make the total hilbert space.""" return self._local_size
[docs] def size_at_index(self, i: int) -> int: return self.local_size
@property def local_states(self) -> Optional[list[float]]: r"""A list of discrete local quantum numbers. If the local states are infinitely many, None is returned.""" return self._local_states
[docs] def states_at_index(self, i: int): return self.local_states
@property def n_states(self) -> int: r"""The total dimension of the many-body Hilbert space. Throws an exception iff the space is not indexable.""" return self._hilbert_index.n_states @property def is_finite(self) -> bool: r"""Whether the local hilbert space is finite.""" return self._is_finite @property def constrained(self) -> bool: r"""The hilbert space does not contains `prod(hilbert.shape)` basis states. Typical constraints are population constraints (such as fixed number of bosons, fixed magnetization...) which ensure that only a subset of the total unconstrained space is populated. Typically, objects defined in the constrained space cannot be converted to QuTiP or other formats. """ return self._constraint_fn is not None def _numbers_to_states(self, numbers: np.ndarray, out: np.ndarray) -> np.ndarray: # this is guaranteed # numbers = concrete_or_error( # np.asarray, numbers, HilbertIndexingDuringTracingError # ) return self._hilbert_index.numbers_to_states(numbers, out) def _states_to_numbers(self, states: np.ndarray, out: np.ndarray): # guaranteed # states = concrete_or_error( # np.asarray, states, HilbertIndexingDuringTracingError # ) self._hilbert_index.states_to_numbers(states, out) return out
[docs] def all_states(self, out: Optional[np.ndarray] = None) -> np.ndarray: r"""Returns all valid states of the Hilbert space. Throws an exception if the space is not indexable. Args: out: an optional pre-allocated output array Returns: A (n_states x size) batch of states. this corresponds to the pre-allocated array if it was passed. """ return self._hilbert_index.all_states(out)
@property def _hilbert_index(self) -> HilbertIndex: """ Returns the `HilbertIndex` object, which is a numba jitclass used to convert integers to states and vice-versa. """ if self.__hilbert_index is None: if not self.is_indexable: raise RuntimeError("The hilbert space is too large to be indexed.") if self.constrained: self.__hilbert_index = ConstrainedHilbertIndex( np.asarray(self.local_states, dtype=np.float64), self.size, self._constraint_fn, ) else: self.__hilbert_index = UnconstrainedHilbertIndex( np.asarray(self.local_states, dtype=np.float64), self.size ) return self.__hilbert_index def __repr__(self): constr = f", constrained={self.constrained}" if self.constrained else "" clsname = type(self).__name__ return f"{clsname}(local_size={self._local_size}, N={self.size}{constr})" @property def _attrs(self): return ( self.size, self.local_size, self._local_states_frozen, self.constrained, self._constraint_fn, )