netket.hilbert.DiscreteHilbert
netket.hilbert.DiscreteHilbert#
- class netket.hilbert.DiscreteHilbert#
Bases:
netket.hilbert.AbstractHilbert
Abstract class for an hilbert space defined on a lattice.
This class definese the common interface that can be used to interact with hilbert spaces on lattices.
- Inheritance
- Attributes
-
- n_states#
The total dimension of the many-body Hilbert space. Throws an exception iff the space is not indexable.
- Return type
- Methods
- all_states(out=None)[source]#
Returns all valid states of the Hilbert space.
Throws an exception if the space is not indexable.
- numbers_to_states(numbers, out=None)[source]#
Returns the quantum numbers corresponding to the n-th basis state for input n. n is an array of integer indices such that
numbers[k]=Index(states[k])
. Throws an exception iff the space is not indexable.
- ptrace(sites)#
Returns the hilbert space without the selected sites.
Not all hilbert spaces support this operation.
- random_state(key=None, size=None, dtype=<class 'numpy.float32'>)#
Generates either a single or a batch of uniformly distributed random states. Runs as
random_state(self, key, size=None, dtype=np.float32)
by default.- Parameters
key – rng state from a jax-style functional generator.
size (
Optional
[int
]) – If provided, returns a batch of configurations of the form(size, N)
if size is an integer or(*size, N)
if it is a tuple and where \(N\) is the Hilbert space size. By default, a single random configuration with shape(#,)
is returned.dtype – DType of the resulting vector.
- Return type
- Returns
A state or batch of states sampled from the uniform distribution on the hilbert space.
Example
>>> import netket, jax >>> hi = netket.hilbert.Qubit(N=2) >>> k1, k2 = jax.random.split(jax.random.PRNGKey(1)) >>> print(hi.random_state(key=k1)) [1. 0.] >>> print(hi.random_state(key=k2, size=2)) [[0. 0.] [0. 1.]]
- states()[source]#
Returns an iterator over all valid configurations of the Hilbert space. Throws an exception iff the space is not indexable. Iterating over all states with this method is typically inefficient, and
`all_states`
should be prefered.
- states_at_index(i)[source]#
A list of discrete local quantum numbers at the site i. If the local states are infinitely many, None is returned.